ПРАКТИЧЕСКОЕ ЗАНЯТИЕ №6 ФУНКЦИИ ОДНОЙ И МНОГИХ ПЕРЕМЕННЫХ. ФУНКЦИЯ КОББА-ДУГЛАСА

Примеры

1. $f(x) = \lg x$ - функция одной переменной x, заданная на множестве $M = \{x : x \in R^1, x > 0\}$. В частности $f(10) = \lg 10 = 1$.

2. $f(X) = \frac{1 - x_1 x_2}{x_1^2 + x_2^2}$ - функция двух переменных x_1, x_2 , заданная на множе-

стве $M = R^2 \setminus \{O(0,0)\}$. В частности, в точке A(1,-1) имеем $f(A) = \frac{1-1\cdot(-1)}{1^2+(-1)^2} = 1$.

3. $f(X) = \sqrt{4 - x_1^2 - x_2^2 - x_3^2}$ - функция трех переменных x_1, x_2, x_3 , заданная на множестве $M = \{X : X \in R^3, x_1^2 + x_2^2 + x_3^2 \le 4\}$. В частности, в точке A(1;1;1) имеем $f(A) = \sqrt{4 - 1^2 - 1^2 - 1^2} = 1$.

Упражнения

1. Найти значение функции $y = \frac{x_1^4 + 2x_1^2x_2^2 + x_2^4}{1 - x_1^2 - x_2^2}$ в точках окружности $x_1^2 + x_2^2 = R^2$.

2. Найти $f(x_1, x_2)$, если $f(x_1 + x_2, x_1 - x_2) = x_1 x_2 + x_2^2$.

Примеры

1. $f(x) = \sqrt{x-1}$ - функция одной переменной *x*;

$$D(f) = [1,+\infty) \subset R^1$$
; $E(f) = [0,+\infty) \subset R^1$.

2. $f(X) = \frac{1}{x_1^2 + x_2^2}$ - функция двух переменных;

$$D(f) = R^2 \setminus \{O(0,0)\} \subset R^2; \quad E(f) = (0,+\infty) \subset R^1.$$

3. $f(X) = \sqrt{1 - x_1^2 - x_2^2 - x_3^2}$ - функция трех переменных;

$$D(f) = \{X : X \in \mathbb{R}^3, x_1^2 + x_2^2 + x_3^2 \le 1\} \subset \mathbb{R}^3; E(f) = [0,1] \subset \mathbb{R}^1.$$

Упражнения

Найти области определения заданных функций.

1.
$$y = \sqrt{\frac{x-3}{1-3x+2x^2}}$$
.

2.
$$y = \sqrt{1 - x_1^2 - x_2^2}$$
.

3.
$$y = \sqrt{x_2 \sin x_1}$$
.

4.
$$y = 1 + \sqrt{-(x_1 - x_2)^2}$$
.

5.
$$y = \ln(x_1^2 + x_2)$$
.

6.
$$y = \ln(x_1 + x_2)$$
.

7.
$$y = arctg \frac{x_1 - x_2}{1 + x_1^2 x_2^2}$$
.

9.
$$y = \frac{1}{x_1^2 + x_2^2}$$
.

11.
$$y = \frac{1}{\sqrt{x_2 - \sqrt{x_1}}}$$
.

8.
$$y = x_1 + \arccos x_2$$
.

10.
$$y = \sqrt{1 - x_1^2} + \sqrt{1 - x_2^2}$$
.

12.
$$y = \arcsin \frac{x_2}{x_1}$$
.

Пример. Если $f(x) = \sqrt{x^2}$, $x \in \mathbb{R}^1$ и g(x) = |x|, $x \in \mathbb{R}^1$, то f = g, так как при всех $x \in R^1$ справедливо равенство $\sqrt{x^2} = |x|$

Если $\mathsf{M}' \subset D(f)$, то функцию g(X) = f(X), $X \in \mathsf{M}'$ называют сужением ϕ ункции f на множество M'.

Пример. Если $M' = [0, +\infty)$, то функция g(x) = x, $x \in M'$ является сужением функции $f(x) = |x|, x \in \mathbb{R}^1$ на множество M'.

равенство g(X) = f(X) верно Если при всех $X \in \mathsf{M}'$, $M' \subset D(f) \cap D(g)$, т, е. сужения функций f и g на множество M' совпадают, то в этом случае говорят, что функции f и g равны на множестве M'. Например, функции $\sqrt{x^2}$ и x равны на множестве $M' = [0, +\infty)$.

Упражнения

Найти области определения функций f, g, f + g.

1.
$$f(x) = \sqrt[4]{3-x}$$
,

$$g(x) = \sqrt{x+1} .$$

2.
$$f(x) = \sqrt{1 - x^2}$$
, $g(x) = \sqrt[3]{\frac{x}{2x - 1}}$.

$$g(x) = \sqrt[3]{\frac{x}{2x-1}}.$$

3.
$$f(x) = \sqrt{x} - \sqrt{x-3}$$
, $g(x) = \lg(x^2 - 4)$.

$$g(x) = \lg(x^2 - 4)$$

4.
$$f(x) = \frac{1}{\sqrt[4]{5x - x^2}}, \qquad g(x) = tgx.$$

$$g(x) = tgx.$$

5.
$$f(x) = \lg(16 - x^2)$$
, $g(x) = \frac{1}{1 - \sin x}$.

$$g(x) = \frac{1}{1 - \sin x}.$$

6.
$$f(x) = x + \sqrt{x-1}$$
, $g(x) = x - \sqrt{x-1}$.

$$g(x) = x - \sqrt{x - 1}$$

Пример. Функция $f(x) = \sin x$ ограничена во всей области определения $D(f) = (-\infty, +\infty)$, так как множество ее значений E(f) = [-1,1] - множество ограниченное $(-1 \le \sin x \le 1)$.

Пример. Функция $f(X) = \frac{1}{x_1^2 + x_2^2}$ ограничена лишь снизу во всей облас-

ти определения $D(f) = R^2 \setminus \{(0,0)\}$, так как множество ее значений E(f) ограничено только снизу так, что f(X) > 0. Функция не ограничена сверху в любой окрестности точки O(0,0): существует последовательность

$$X_{k}\left(\frac{1}{k}, \frac{1}{k}\right), k = 1, 2, \dots$$

сходящаяся к точке O(0,0) и такая, что последовательность значений функции

$$f(X_k) = \frac{1}{\left(\frac{1}{k}\right)^2 + \left(\frac{1}{k}\right)^2} = \frac{k^2}{2}$$

стремится $\kappa + \infty$.

Упражнения

- **1.** Показать, что функция $y = \frac{1}{x^2}$, $x \in \mathbb{R}^1$, $x \neq 0$, неограниченна, и построить ее график.
 - **2.** Показать, что функция $y = \frac{x^3}{x^4 + 1}$, $x \in R^1$, ограничена.
- **3.** Показать, что сумма и произведение ограниченных функций ограниченная функция

Примеры.

- **1.** Следующие пара функций $y = 2^u$, $u = \sin x$ задает сложную функцию $y = 2^{\sin x}$, определенную на множестве R^1 и имеющую множеством значений отрезок $\left[\frac{1}{2}, 2\right]$.
- **2.** Аналогично, функция $y = \ln \cos \frac{1}{\sqrt{x}}$ является суперпозицией следующих функций $y = \ln u$, $u = \cos v$, $v = \frac{1}{z}$, $z = \sqrt{x}$.

Примеры

1. Эллипс

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

задается параметрически в виде $x = a \cos t$, $y = b \sin t$, где $0 \le t \le 2\pi$.

2. Прямая линия в пространстве имеет параметрическое задание $x = x_0 + mt$, $y = y_0 + nt$, $z = z_0 + pt$, где (x_0, y_0, z_0) - точка, через которую проходит прямая; (m, n, p) - вектор, параллельный прямой; $-\infty < t < +\infty$.

Упражнение

Как может быть задана параметрически зависимость $z = x^2 + y^2$ (параболоид вращения)?

Примеры

1. Функция $f(x) = x^2$ - выпуклая на \mathbf{R}^1 . Действительно, для произвольных $x,z \in \mathbf{R}^1$ и любого $\lambda \in [0,1]$ получим

$$\lambda f(x) + (1 - \lambda)f(z) - f(\lambda x + (1 - \lambda)z) = \lambda x^{2} + (1 - \lambda)z^{2} - (\lambda x + (1 - \lambda)z)^{2} =$$

$$= \lambda (1 - \lambda)x^{2} - 2\lambda (1 - \lambda)xz + \lambda (1 - \lambda)z^{2} = \lambda (1 - \lambda)(x - z)^{2} \ge 0.$$

2. Линейная функция

$$f(X) = a_1 x_1 + a_2 x_2 + \dots + a_n x_n$$

является одновременно и выпуклой, и вогнутой на всем пространстве R^n .

Упражнения

1. Покажите, что квадратичная (форма) функция

$$f(X) = 2x_1^2 + 11x_2^2 + 52x_3^2 + 8x_1x_2 + 4x_1x_3 - 16x_2x_3,$$

является выпуклой на пространстве R^3 ?

2. Когда квадратичная (форма) функция

$$f(x_1, x_2, ..., x_n) = \sum_{i=1}^{n} \sum_{k=1}^{n} a_{ik} x_i x_k$$

является выпуклой (вогнутой) на R^n ?

Пример. Функция $y = \cos x$, для которой $D(f) = (-\infty, +\infty)$, является четной функцией, так как $\cos(-x) = \cos x$ для всех $x \in D(f)$.

Упражнение

Четной или нечетной функцией является функция $y = \arcsin x$, для которой D(f) = [-1,1]?

Примеры

- **1.** $y = \sin x$ и $y = \cos x$ имеют период $T = 2\pi$.
- **2.** y = tgx и y = ctgx имеют период $T = \pi$.
- 3. Функция Дирихле

$$y = \begin{cases} 1, & ecnu & x - paциональное, \\ 0, & ecnu & x - uppaциональное, \end{cases}$$

имеет периодом любое положительное рациональное число, однако не имеет наименьшего периода.

Примеры

- **1**. $y = \lg x$ строго возрастающая функция во всей области определения.
- **2.** $y = \left(\frac{1}{2}\right)^{3}$ строго убывающая функция во всей области определения.
- **3.** $y = x^2$ строго возрастающая в промежутке $M = [0, +\infty)$ и строго убывающая в промежутке $M = (-\infty, 0]$.
 - **4.** y = E(x) = [x] (целая часть числа x) неубывающая функция.
 - **5.** $y = \sin x$, строго возрастающая функция на $M = \left| -\frac{\pi}{2}, \frac{\pi}{2} \right|$.

Упражнения

- **1.** Показать, что функция $f(x) = x^3 + 3x + 5$ возрастает во всей области ее определения.
 - **2.** Показать, что функция $f(x) = \frac{x}{1+x^2}$ убывает в промежутке $(1, +\infty)$.
- 3. Являются ли взаимно обратными функции, следующие заданные функции:

1)
$$y = \frac{x+1}{x-1}$$
, $y = \frac{x+1}{x-1}$.
2) $y = 1 - \sqrt[3]{x}$, $y = (1-x)^3$.
3) $y = 1 + \sqrt{x}$, $y = (x-1)^2$.
4) $y = \sqrt{1-x^2}$, $y = \sqrt{1-x^2}$.

2)
$$y = 1 - \sqrt[3]{x}$$
, $y = (1 - x)^3$.

3)
$$y = 1 + \sqrt{x}$$
, $y = (x - 1)^2$

4)
$$y = \sqrt{1 - x^2}$$
, $y = \sqrt{1 - x^2}$